Fine Tuning Parameters for the Universe

1. strong nuclear force constant

if larger: no hydrogen would form; atomic nuclei for most life-essential elements would be unstable; thus, no life chemistry

if smaller: no elements heavier than hydrogen would form: again, no life chemistry

- 2. weak nuclear force constant
 - if larger: too much hydrogen would convert to helium in big bang; hence, stars would convert too much matter into heavy elements making life chemistry impossible if smaller: too little helium would be produced from big bang; hence, stars would convert too little matter into heavy elements making life chemistry impossible
- 3. gravitational force constant *if larger*: stars would be too hot and would burn too rapidly and too unevenly for life chemistry *if smaller*: stars would be too cool to ignite nuclear

fusion; thus, many of the elements needed for life chemistry would never form

4. electromagnetic force constant

if greater: chemical bonding would be disrupted; elements more massive than boron would be unstable to fission

if lesser: chemical bonding would be insufficient for life chemistry

5. ratio of electromagnetic force constant to gravitational force constant

if larger: all stars would be at least 40% more massive than the sun; hence, stellar burning would be too brief and too uneven for life support

if smaller: all stars would be at least 20% less massive

than the sun, thus incapable of producing heavy elements

6. ratio of electron to proton mass

if larger: chemical bonding would be insufficient for life chemistry

if smaller: same as above

- 7. ratio of number of protons to number of electrons *if larger*: electromagnetism would dominate gravity, preventing galaxy, star, and planet formation *if smaller*: same as above
- 8. expansion rate of the universe if larger: no galaxies would form if smaller: universe would collapse, even before stars formed
- 9. entropy level of the universe *if larger*: stars would not form within proto-galaxies *if smaller*: no proto-galaxies would form
- 10. mass density of the universe if larger: overabundance of deuterium from big bang would cause stars to burn rapidly, too rapidly for life to form

if smaller: insufficient helium from big bang would result in a shortage of heavy elements

11. velocity of light

if faster: stars would be too luminous for life support if slower: stars would be insufficiently luminous for life support

12. age of the universe

if older: no solar-type stars in a stable burning phase
would exist in the right (for life) part of the galaxy
if younger: solar-type stars in a stable burning phase
would not yet have formed

13. initial uniformity of radiation

if more uniform: stars, star clusters, and galaxies would not have formed

if less uniform: universe by now would be mostly black holes and empty space

14. average distance between galaxies

if larger: star formation late enough in the history of the universe would be hampered by lack of material if smaller: gravitational tug-of-wars would destabilize the sun's orbit

15. density of galaxy cluster

if denser: galaxy collisions and mergers would disrupt the sun's orbit

if less dense: star formation late enough in the history of the universe would be hampered by lack of material

16. average distance between stars

if larger: heavy element density would be too sparse for rocky planets to form

if smaller: planetary orbits would be too unstable for life

17. fine structure constant (describing the fine-structure splitting of spectral lines) *if larger*: all stars would be at least 30% less massive than the sun

if larger than 0.06: matter would be unstable in large magnetic fields

if smaller: all stars would be at least 80% more massive than the sun

18. decay rate of protons

if greater: life would be exterminated by the release of radiation

if smaller: universe would contain insufficient matter for life

19. ¹²C to ¹⁶O nuclear energy level ratio *if larger*: universe would contain insufficient oxygen for

life

if smaller: universe would contain insufficient carbon for life

20. ground state energy level for ⁴He *if larger*: universe would contain insufficient carbon and oxygen for life

if smaller: same as above

21. decay rate of ⁸Be

if slower: heavy element fusion would generate
catastrophic explosions in all the stars
if faster: no element heavier than beryllium would form;
thus, no life chemistry

- 22. ratio of neutron mass to proton mass if higher: neutron decay would yield too few neutrons for the formation of many life-essential elements if lower: neutron decay would produce so many neutrons as to collapse all stars into neutron stars or black holes
- 23. initial excess of nucleons over anti-nucleons if greater: radiation would prohibit planet formation if lesser: matter would be insufficient for galaxy or star formation
- 24. polarity of the water molecule

if greater: heat of fusion and vaporization would be too high for life

if smaller: heat of fusion and vaporization would be too low for life; liquid water would not work as a solvent for life chemistry; ice would not float, and a runaway freezeup would result

25. supernovae eruptions

if too close, too frequent, or too late: radiation would exterminate life on the planet

if too distant, too infrequent, or too soon: heavy elements would be too sparse for rocky planets to form

26. white dwarf binaries

if too few: insufficient fluorine would exist for life chemistry

if too many: planetary orbits would be too unstable for life

if formed too soon: insufficient fluorine production
if formed too late: fluorine would arrive too late for life
chemistry

27. ratio of exotic matter mass to ordinary matter mass *if larger*: universe would collapse before solar-type stars could form

if smaller: no galaxies would form

- 28. number of effective dimensions in the early universe *if larger*: quantum mechanics, gravity, and relativity could not coexist; thus, life would be impossible *if smaller*: same result
- 29. number of effective dimensions in the present universe

if smaller: electron, planet, and star orbits would become unstable

if larger: same result

30. mass of the neutrino

if smaller: galaxy clusters, galaxies, and stars would not form

if larger: galaxy clusters and galaxies would be too dense

31. big bang ripples

if smaller: galaxies would not form; universe would
expand too rapidly

if larger: galaxies/galaxy clusters would be too dense for life; black holes would dominate; universe would collapse before life-site could form

32. size of the relativistic dilation factor *if smaller*: certain life-essential chemical reactions will

not function properly if larger: same result

33. uncertainty magnitude in the Heisenberg uncertainty principle

if smaller: oxygen transport to body cells would be too small and certain life-essential elements would be unstable

if larger: oxygen transport to body cells would be too great and certain life-essential elements would be unstable

34. <u>cosmological constant</u>

if larger: universe would expand too quickly to form solar-type stars

Taken from Big Bang Refined by Fire by Dr. Hugh Ross, 1998. Reasons To Believe, Pasadena, CA.